UnFEAR : Unsupervised Feature Extraction Clustering with an Application to Crisis Regimes Classification.

We introduce unFEAR, Unsupervised Feature Extraction Clustering, to identify economic crisis regimes. Given labeled crisis and non-crisis episodes and the corresponding features values, unFEAR uses unsupervised representation learning and a novel mode contrastive autoencoder to group episodes into t...

Descrizione completa

Dettagli Bibliografici
Natura: Periodico
Lingua:English
Pubblicazione: Washington, D.C. : International Monetary Fund, 2020.
Serie:IMF Working Papers; Working Paper ; No. 2020/262
Accesso online:Full text available on IMF