Reinforcement learning : an introduction /
"Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richar...
Главные авторы: | Sutton, Richard S. (Автор), Barto, Andrew G. (Автор) |
---|---|
Формат: | |
Язык: | English |
Опубликовано: |
Cambridge, Massachusetts :
The MIT Press,
c2018
|
Редактирование: | Second edition. |
Серии: | Adaptive computation and machine learning series
|
Предметы: | |
Classic Catalogue: | View this record in Classic Catalogue |
Схожие документы
-
Dynamic power management by reinforcement learning
по: Hossain, Safayet, и др.
Опубликовано: (2016) -
Self-learning game bot using deep reinforcement learning
по: Ananto, Azizul Haque
Опубликовано: (2018) -
Character animation using reinforcement learning and imitation learning algorithms
по: Tahmid, Tokey, и др.
Опубликовано: (2021) -
Implementation of reinforcement learning architecture to augment an AI that can self-learn to play video games
по: Mahmud, Aqil, и др.
Опубликовано: (2023) -
Traffic congestion reduction in SUMO using reinforcement learning method
по: Mouly, Radia Rahman, и др.
Опубликовано: (2021)