Reinforcement learning : an introduction /
"Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richar...
主要な著者: | Sutton, Richard S. (著者), Barto, Andrew G. (著者) |
---|---|
フォーマット: | 図書 |
言語: | English |
出版事項: |
Cambridge, Massachusetts :
The MIT Press,
c2018
|
版: | Second edition. |
シリーズ: | Adaptive computation and machine learning series
|
主題: | |
Classic Catalogue: | View this record in Classic Catalogue |
類似資料
-
Dynamic power management by reinforcement learning
著者:: Hossain, Safayet, 等
出版事項: (2016) -
Self-learning game bot using deep reinforcement learning
著者:: Ananto, Azizul Haque
出版事項: (2018) -
Character animation using reinforcement learning and imitation learning algorithms
著者:: Tahmid, Tokey, 等
出版事項: (2021) -
Implementation of reinforcement learning architecture to augment an AI that can self-learn to play video games
著者:: Mahmud, Aqil, 等
出版事項: (2023) -
Traffic congestion reduction in SUMO using reinforcement learning method
著者:: Mouly, Radia Rahman, 等
出版事項: (2021)