Reinforcement learning : an introduction /
"Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richar...
Auteurs principaux: | Sutton, Richard S. (Auteur), Barto, Andrew G. (Auteur) |
---|---|
Format: | Livre |
Langue: | English |
Publié: |
Cambridge, Massachusetts :
The MIT Press,
c2018
|
Édition: | Second edition. |
Collection: | Adaptive computation and machine learning series
|
Sujets: | |
Classic Catalogue: | View this record in Classic Catalogue |
Documents similaires
-
Dynamic power management by reinforcement learning
par: Hossain, Safayet, et autres
Publié: (2016) -
Self-learning game bot using deep reinforcement learning
par: Ananto, Azizul Haque
Publié: (2018) -
Character animation using reinforcement learning and imitation learning algorithms
par: Tahmid, Tokey, et autres
Publié: (2021) -
Implementation of reinforcement learning architecture to augment an AI that can self-learn to play video games
par: Mahmud, Aqil, et autres
Publié: (2023) -
Traffic congestion reduction in SUMO using reinforcement learning method
par: Mouly, Radia Rahman, et autres
Publié: (2021)