A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Asıl Yazarlar: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Diğer Yazarlar: | Alam, Md. Golam Rabiul |
Materyal Türü: | Tez |
Dil: | English |
Baskı/Yayın Bilgisi: |
Brac University
2023
|
Konular: | |
Online Erişim: | http://hdl.handle.net/10361/21844 |
Benzer Materyaller
-
A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
Yazar:: Chowdhury, Asif Hasan, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
Yazar:: Ismail, Sayem Mohammad, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
Yazar:: Haque, Abid Hossain, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
Yazar:: Shahriar, Hasan, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Towards devising an effective and reliable means of fish detection and classification through the exploration of various deep learning algorithms
Yazar:: Farhan, Rafid, ve diğerleri
Baskı/Yayın Bilgisi: (2024)