3G and 4G paging success rate based mobile network anomaly detection using supervised and unsupervised learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering, 2022.
Egile nagusia: | Ahasan, Md Rakibul |
---|---|
Beste egile batzuk: | Alam, Md. Golam Robiul |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2022
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/17164 |
Antzeko izenburuak
-
LRFS: online shoppers’ behavior based efficient customer segmentation model
nork: Khan, Riyo Hayat
Argitaratua: (2023) -
A Study of gainful employment of learners receiving skills training in the informal sector using Machine Learning
nork: Raizan, Syed Ahsan, et al.
Argitaratua: (2021) -
Speech emotion detection using supervised, unsupervised and feature selection algorithms
nork: Rifat, Abu Nuraiya Mahfuza Yesmin, et al.
Argitaratua: (2019) -
Analysis on dengue severity using machine learning approach
nork: Sayeed, Sanjana, et al.
Argitaratua: (2021) -
Anomaly clustering based on correspondence analysis
nork: Islam, Humayra
Argitaratua: (2018)