Determining fatal heart failure risks in patients diagnosed with chronic kidney disease: a machine learning approach
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Главные авторы: | Haque, Adiba, Kabir, Anika Nahian Binte, Islam, Maisha, Monjur, Mayesha |
---|---|
Другие авторы: | Rhaman, Md. Khalilur |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
Brac University
2022
|
Предметы: | |
Online-ссылка: | http://hdl.handle.net/10361/17028 |
Схожие документы
-
In-hospital outcome of Diabetes patients with Chronic Kidney Disease
по: Kabir, Sabrina
Опубликовано: (2021) -
Prevalence of chronic kidney disease in South Asia: A systematic review
по: Hasan, Mehedi, и др.
Опубликовано: (2022) -
Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017
по: GBD Chronic Kidney Disease Collaboration
Опубликовано: (2022) -
Characterization and analysis of the major risk factors of the Kidney Patients of Bangladesh: a retrospective study
по: Rahman, Mahmud-Ur
Опубликовано: (2018) -
Chronic kidney disease detection using ensemble classi ers and feature set reduction
по: Shawan, Naveed Rahman, и др.
Опубликовано: (2019)