Myocardial infarction detection using ECG signal applying deep learning techniques - ConvNet, VGG16, InceptionV3 and MobileNet
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Huvudupphovsmän: | Promita, Samanta Tabassum, Biswas, Simon Abhijet, Mozumder, Nisat Islam, Taharat, Mamur |
---|---|
Övriga upphovsmän: | Uddin, Jia |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
Brac University
2022
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/16812 |
Liknande verk
-
Tomato leaf disease detection using Resnet-50 and MobileNet Architecture
av: Tahamid, Abu
Publicerad: (2021) -
Plant disease diagnosis using deep transfer learning architectures- VGG19, MobileNetV2 and Inception-V3
av: Kobra, Khadija-Tul, et al.
Publicerad: (2022) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
av: Bin Mushfiq, Rahil, et al.
Publicerad: (2024) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
av: Sharma, Tanmoyee, et al.
Publicerad: (2021) -
Multi-classification Network for Detecting Skin Diseases using Deep Learning and XAI
av: Athina, Fahima Hasan, et al.
Publicerad: (2022)