Myocardial infarction detection using ECG signal applying deep learning techniques - ConvNet, VGG16, InceptionV3 and MobileNet
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
主要な著者: | Promita, Samanta Tabassum, Biswas, Simon Abhijet, Mozumder, Nisat Islam, Taharat, Mamur |
---|---|
その他の著者: | Uddin, Jia |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
Brac University
2022
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/16812 |
類似資料
-
Tomato leaf disease detection using Resnet-50 and MobileNet Architecture
著者:: Tahamid, Abu
出版事項: (2021) -
Plant disease diagnosis using deep transfer learning architectures- VGG19, MobileNetV2 and Inception-V3
著者:: Kobra, Khadija-Tul, 等
出版事項: (2022) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
著者:: Bin Mushfiq, Rahil, 等
出版事項: (2024) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
著者:: Sharma, Tanmoyee, 等
出版事項: (2021) -
Multi-classification Network for Detecting Skin Diseases using Deep Learning and XAI
著者:: Athina, Fahima Hasan, 等
出版事項: (2022)