Myocardial infarction detection using ECG signal applying deep learning techniques - ConvNet, VGG16, InceptionV3 and MobileNet
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Κύριοι συγγραφείς: | Promita, Samanta Tabassum, Biswas, Simon Abhijet, Mozumder, Nisat Islam, Taharat, Mamur |
---|---|
Άλλοι συγγραφείς: | Uddin, Jia |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
Brac University
2022
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10361/16812 |
Παρόμοια τεκμήρια
-
Tomato leaf disease detection using Resnet-50 and MobileNet Architecture
ανά: Tahamid, Abu
Έκδοση: (2021) -
Plant disease diagnosis using deep transfer learning architectures- VGG19, MobileNetV2 and Inception-V3
ανά: Kobra, Khadija-Tul, κ.ά.
Έκδοση: (2022) -
A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
ανά: Bin Mushfiq, Rahil, κ.ά.
Έκδοση: (2024) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
ανά: Sharma, Tanmoyee, κ.ά.
Έκδοση: (2021) -
Multi-classification Network for Detecting Skin Diseases using Deep Learning and XAI
ανά: Athina, Fahima Hasan, κ.ά.
Έκδοση: (2022)