A squeeze and excitation ResNeXt-based deep learning model for Bangla handwritten basic to compound character recognition
This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering, 2021.
Κύριος συγγραφέας: | Khan, Mohammad Meraj |
---|---|
Άλλοι συγγραφείς: | Rahman, Md. Khalilur |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
Brac University
2022
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10361/16368 |
Παρόμοια τεκμήρια
-
Isolated bangla handwritten character & digit recognition using convolutional neural network
ανά: Alif, Mujadded Al Rabbani, κ.ά.
Έκδοση: (2018) -
A Comparative study on Bengali handwritten character recognition and prediction using CNN
ανά: Abrar, Muntaqa, κ.ά.
Έκδοση: (2021) -
Bangali Handwritten characters classification using Deep Convolutional Neural Network
ανά: Sikder, Shihab Uddin, κ.ά.
Έκδοση: (2022) -
Handwritten character recognition using neural network
ανά: Hussain, Shoumin Rafsun, κ.ά.
Έκδοση: (2021) -
Grouping of handwritten Bangla basic characters, numerals and vowel modifiers for multilayer classification
ανά: Reza, Khondker Nayef, κ.ά.
Έκδοση: (2017)