Application of machine learning techniques on the context of predicting upcoming traffic congestion and providing the best preferred path
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2019.
Huvudupphovsmän: | Saquib, Muhammad Sadman, Ali, Mili Mohammad, Tazmim, Marisha, Ahmad, Faiyaaz |
---|---|
Övriga upphovsmän: | Arif, Hossain |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
Brac University
2019
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/12295 |
Liknande verk
-
A machine learning approach to predicting and mitigating traffic congestion
av: Faisal, Abu Fatah Mohammed, et al.
Publicerad: (2024) -
Reducing traffic congestion level of Dhaka city using policy based algorithm in SUMO
av: Islam, Khandker Mushfiqul, et al.
Publicerad: (2018) -
Reducing traffic congestion through ride sharing in Bangladesh: a case study of Dhaka City
av: Mollah, Md Lokman Hossain
Publicerad: (2021) -
A novel approach to forecast traffic congestion using CMTF and machine learning
av: Chowdhury, Md. Mohiuddin, et al.
Publicerad: (2018) -
Traffic congestions in Dhaka and socio-economic development in Bangladesh: some micro and macro-level connections
av: Ahmed, Ansar
Publicerad: (2017)