Structural Reforms and Economic Growth : A Machine Learning Approach /

The qualitative and granular nature of most structural indicators and the variety in data sources poses difficulties for consistent cross-country assessments and empirical analysis. We overcome these issues by using a machine learning approach (the partial least squares method) to combine a broad se...

Повний опис

Бібліографічні деталі
Автор: Ari, Anil
Інші автори: Pula, Gabor, Sun, Liyang
Формат: Журнал
Мова:English
Опубліковано: Washington, D.C. : International Monetary Fund, 2022.
Серія:IMF Working Papers; Working Paper ; No. 2022/184
Предмети:
Онлайн доступ:Full text available on IMF
LEADER 02587cas a2200325 a 4500
001 AALejournalIMF023205
008 230101c9999 xx r poo 0 0eng d
020 |a 9798400219955 
020 |c 20.00 USD 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Ari, Anil. 
245 1 0 |a Structural Reforms and Economic Growth :   |b A Machine Learning Approach /  |c Anil Ari, Gabor Pula, Liyang Sun. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2022. 
300 |a 1 online resource (32 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a The qualitative and granular nature of most structural indicators and the variety in data sources poses difficulties for consistent cross-country assessments and empirical analysis. We overcome these issues by using a machine learning approach (the partial least squares method) to combine a broad set of cross-country structural indicators into a small number of synthetic scores which correspond to key structural areas, and which are suitable for consistent quantitative comparisons across countries and time. With this newly constructed dataset of synthetic structural scores in 126 countries between 2000-2019, we establish stylized facts about structural gaps and reforms, and analyze the impact of reforms targeting different structural areas on economic growth. Our findings suggest that structural reforms in the area of product, labor and financial markets as well as the legal system have a significant impact on economic growth in a 5-year horizon, with one standard deviation improvement in one of these reform areas raising cumulative 5-year growth by 2 to 6 percent. We also find synergies between different structural areas, in particular between product and labor market reforms. 
538 |a Mode of access: Internet 
650 7 |a Computable and Other Applied General Equilibrium Models  |2 imf 
650 7 |a Institutions and Growth  |2 imf 
650 7 |a Institutions and the Macroeconomy  |2 imf 
650 7 |a Large Data Sets  |2 imf 
650 7 |a Quantitative Policy Modeling  |2 imf 
700 1 |a Pula, Gabor. 
700 1 |a Sun, Liyang. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2022/184 
856 4 0 |z Full text available on IMF  |u https://elibrary.imf.org/openurl?genre=journal&issn=1018-5941&volume=2022&issue=184  |z IMF e-Library