Understanding and Predicting Systemic Corporate Distress : A Machine-Learning Approach /
In this paper, we study systemic non-financial corporate sector distress using firm-level probabilities of default (PD), covering 55 economies, and spanning the last three decades. Systemic corporate distress is identified by elevated PDs across a large portion of the firms in an economy. A machine-...
Hlavní autor: | Hacibedel, Burcu |
---|---|
Další autoři: | Qu, Ritong |
Médium: | Časopis |
Jazyk: | English |
Vydáno: |
Washington, D.C. :
International Monetary Fund,
2022.
|
Edice: | IMF Working Papers; Working Paper ;
No. 2022/153 |
Témata: | |
On-line přístup: | Full text available on IMF |
Podobné jednotky
-
Can Financial Soundness Indicators Help Predict Financial Sector Distress? /
Autor: Pietrzak, Marcin
Vydáno: (2021) -
Household Deleveraging and Saving Rates : A Cross-Country Analysis /
Autor: Bouis, Romain
Vydáno: (2021) -
Financial Crises, Investment Slumps, and Slow Recoveries /
Autor: Cerra, Valerie
Vydáno: (2021) -
Systemic Risk Assessment in Low Income Countries : Balancing Financial Stability and Development /
Autor: Marchettini, Daniela
Vydáno: (2015) -
Corporate Vulnerabilities in the Middle East, North Africa, and Pakistan in the Wake of COVID-19 Pandemic /
Autor: Abidi, Nordine
Vydáno: (2022)