Understanding and Predicting Systemic Corporate Distress : A Machine-Learning Approach /

In this paper, we study systemic non-financial corporate sector distress using firm-level probabilities of default (PD), covering 55 economies, and spanning the last three decades. Systemic corporate distress is identified by elevated PDs across a large portion of the firms in an economy. A machine-...

Descrizione completa

Dettagli Bibliografici
Autore principale: Hacibedel, Burcu
Altri autori: Qu, Ritong
Natura: Periodico
Lingua:English
Pubblicazione: Washington, D.C. : International Monetary Fund, 2022.
Serie:IMF Working Papers; Working Paper ; No. 2022/153
Soggetti:
Accesso online:Full text available on IMF
LEADER 02093cas a2200301 a 4500
001 AALejournalIMF023023
008 230101c9999 xx r poo 0 0eng d
020 |c 20.00 USD 
020 |z 9798400216299 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Hacibedel, Burcu. 
245 1 0 |a Understanding and Predicting Systemic Corporate Distress :   |b A Machine-Learning Approach /  |c Burcu Hacibedel, Ritong Qu. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2022. 
300 |a 1 online resource (48 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a In this paper, we study systemic non-financial corporate sector distress using firm-level probabilities of default (PD), covering 55 economies, and spanning the last three decades. Systemic corporate distress is identified by elevated PDs across a large portion of the firms in an economy. A machine-learning based early warning system is constructed to predict the onset of distress in one year's time. Our results show that credit expansion, monetary policy tightening, overvalued stock prices, and debt-linked balance-sheet weaknesses predict corporate distress. We also find that systemic corporate distress events are associated with contractions in GDP and credit growth in advanced and emerging markets at different degrees and milder than financial crises. 
538 |a Mode of access: Internet 
650 7 |a Econometric and Statistical Methods  |2 imf 
650 7 |a Financial Crises  |2 imf 
650 7 |a Financial Forecasting and Simulation  |2 imf 
650 7 |a Financial Markets and the Macroeconomy  |2 imf 
700 1 |a Qu, Ritong. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2022/153 
856 4 0 |z Full text available on IMF  |u https://elibrary.imf.org/openurl?genre=journal&issn=1018-5941&volume=2022&issue=153  |z IMF e-Library