Housing Boom and Headline Inflation : Insights from Machine Learning /

Inflation has been rising during the pandemic against supply chain disruptions and a multi-year boom in global owner-occupied house prices. We present some stylized facts pointing to house prices as a leading indicator of headline inflation in the U.S. and eight other major economies with fast-risin...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Liu, Yang
Muut tekijät: Yang, Di, Zhao, Yunhui
Aineistotyyppi: Aikakauslehti
Kieli:English
Julkaistu: Washington, D.C. : International Monetary Fund, 2022.
Sarja:IMF Working Papers; Working Paper ; No. 2022/151
Aiheet:
Linkit:Full text available on IMF
LEADER 02258cas a2200313 a 4500
001 AALejournalIMF023013
008 230101c9999 xx r poo 0 0eng d
020 |c 20.00 USD 
020 |z 9798400218095 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Liu, Yang. 
245 1 0 |a Housing Boom and Headline Inflation :   |b Insights from Machine Learning /  |c Yang Liu, Di Yang, Yunhui Zhao. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2022. 
300 |a 1 online resource (45 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a Inflation has been rising during the pandemic against supply chain disruptions and a multi-year boom in global owner-occupied house prices. We present some stylized facts pointing to house prices as a leading indicator of headline inflation in the U.S. and eight other major economies with fast-rising house prices. We then apply machine learning methods to forecast inflation in two housing components (rent and owner-occupied housing cost) of the headline inflation and draw tentative inferences about inflationary impact. Our results suggest that for most of these countries, the housing components could have a relatively large and sustained contribution to headline inflation, as inflation is just starting to reflect the higher house prices. Methodologically, for the vast majority of countries we analyze, machine-learning models outperform the VAR model, suggesting some potential value for incorporating such models into inflation forecasting. 
538 |a Mode of access: Internet 
650 7 |a Econometric and Statistical Methods  |2 imf 
650 7 |a Forecasting and Other Model Applications  |2 imf 
650 7 |a Inflation  |2 imf 
650 7 |a Price Level  |2 imf 
700 1 |a Yang, Di. 
700 1 |a Zhao, Yunhui. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2022/151 
856 4 0 |z Full text available on IMF  |u https://elibrary.imf.org/openurl?genre=journal&issn=1018-5941&volume=2022&issue=151  |z IMF e-Library