Systematizing Macroframework Forecasting : High-Dimensional Conditional Forecasting with Accounting Identities /

Forecasting a macroframework, which consists of many macroeconomic variables and accounting identities, is widely conducted in the policy arena to present an economic narrative and check its consistency. Such forecasting, however, is challenging because forecasters should extend limited information...

Description complète

Détails bibliographiques
Auteur principal: Ando, Sakai
Autres auteurs: Kim, Taehoon.
Format: Revue
Langue:English
Publié: Washington, D.C. : International Monetary Fund, 2022.
Collection:IMF Working Papers; Working Paper ; No. 2022/110
Sujets:
Accès en ligne:Full text available on IMF
LEADER 02096cas a2200313 a 4500
001 AALejournalIMF022946
008 230101c9999 xx r poo 0 0eng d
020 |c 20.00 USD 
020 |z 9798400211683 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Ando, Sakai. 
245 1 0 |a Systematizing Macroframework Forecasting :   |b High-Dimensional Conditional Forecasting with Accounting Identities /  |c Sakai Ando, Taehoon Kim. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2022. 
300 |a 1 online resource (25 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a Forecasting a macroframework, which consists of many macroeconomic variables and accounting identities, is widely conducted in the policy arena to present an economic narrative and check its consistency. Such forecasting, however, is challenging because forecasters should extend limited information to the entire macroframework in an internally consistent manner. This paper proposes a method to systematically forecast macroframework by integrating (1) conditional forecasting with machine-learning techniques and (2) forecast reconciliation of hierarchical time series. We apply our method to an advanced economy and a tourism-dependent economy using France and Seychelles and show that it can improve the WEO forecast. 
538 |a Mode of access: Internet 
650 7 |a Conditional Forecasting  |2 imf 
650 7 |a Forecasting and Other Model Applications  |2 imf 
650 7 |a Forecasting and Simulation  |2 imf 
650 7 |a General Aggregative Models  |2 imf 
650 7 |a Macroframework  |2 imf 
700 1 |a Kim, Taehoon.. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2022/110 
856 4 0 |z Full text available on IMF  |u https://elibrary.imf.org/openurl?genre=journal&issn=1018-5941&volume=2022&issue=110  |z IMF e-Library