Structural Breaks in Carbon Emissions : A Machine Learning Analysis /

To reach the global net-zero goal, the level of carbon emissions has to fall substantially at speed rarely seen in history, highlighting the need to identify structural breaks in carbon emission patterns and understand forces that could bring about such breaks. In this paper, we identify and analyze...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Yao, Jiaxiong
Άλλοι συγγραφείς: Zhao, Yunhui
Μορφή: Επιστημονικό περιοδικό
Γλώσσα:English
Έκδοση: Washington, D.C. : International Monetary Fund, 2022.
Σειρά:IMF Working Papers; Working Paper ; No. 2022/009
Θέματα:
Διαθέσιμο Online:Full text available on IMF
LEADER 02400cas a2200325 a 4500
001 AALejournalIMF022323
008 230101c9999 xx r poo 0 0eng d
020 |c 5.00 USD 
020 |z 9798400200267 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Yao, Jiaxiong. 
245 1 0 |a Structural Breaks in Carbon Emissions :   |b A Machine Learning Analysis /  |c Jiaxiong Yao, Yunhui Zhao. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2022. 
300 |a 1 online resource (47 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a To reach the global net-zero goal, the level of carbon emissions has to fall substantially at speed rarely seen in history, highlighting the need to identify structural breaks in carbon emission patterns and understand forces that could bring about such breaks. In this paper, we identify and analyze structural breaks using machine learning methodologies. We find that downward trend shifts in carbon emissions since 1965 are rare, and most trend shifts are associated with non-climate structural factors (such as a change in the economic structure) rather than with climate policies. While we do not explicitly analyze the optimal mix between climate and non-climate policies, our findings highlight the importance of the nonclimate policies in reducing carbon emissions. On the methodology front, our paper contributes to the climate toolbox by identifying country-specific structural breaks in emissions for top 20 emitters based on a user-friendly machine-learning tool and interpreting the results using a decomposition of carbon emission ( Kaya Identity). 
538 |a Mode of access: Internet 
650 7 |a Climate  |2 imf 
650 7 |a Econometric Modeling  |2 imf 
650 7 |a Natural Disasters and Their Management  |2 imf 
650 7 |a Panel Data Models  |2 imf 
650 7 |a Spatio-Temporal Models  |2 imf 
651 7 |a Solomon Islands  |2 imf 
700 1 |a Zhao, Yunhui. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2022/009 
856 4 0 |z Full text available on IMF  |u http://elibrary.imf.org/view/journals/001/2022/009/001.2022.issue-009-en.xml  |z IMF e-Library