House Price Synchronization and Financial Openness : A Dynamic Factor Model Approach /

This paper investigates the developments in house price synchronization across countries by a dynamic factor model using a country- and city-level dataset, and examines what drives the synchronization. The empirical results indicate that: (i) the degree of synchronization has been rising since the 1...

Description complète

Détails bibliographiques
Auteur principal: Katagiri, Mitsuru
Format: Revue
Langue:English
Publié: Washington, D.C. : International Monetary Fund, 2018.
Collection:IMF Working Papers; Working Paper ; No. 2018/209
Sujets:
Accès en ligne:Full text available on IMF
LEADER 01966cas a2200289 a 4500
001 AALejournalIMF022074
008 230101c9999 xx r poo 0 0eng d
020 |c 5.00 USD 
020 |z 9781484378243 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Katagiri, Mitsuru. 
245 1 0 |a House Price Synchronization and Financial Openness :   |b A Dynamic Factor Model Approach /  |c Mitsuru Katagiri. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2018. 
300 |a 1 online resource (28 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a This paper investigates the developments in house price synchronization across countries by a dynamic factor model using a country- and city-level dataset, and examines what drives the synchronization. The empirical results indicate that: (i) the degree of synchronization has been rising since the 1970s, and (ii) a large heterogeneity in the degree of synchronization exists across countries and cities. A panel and cross-sectional regression analysis show that the heterogeneity of synchronization is partly accounted for by the progress in financial and trade openness. Also, the city-level analysis implies that the international synchronization is mainly driven by the city-level connectivity between large and international cities. 
538 |a Mode of access: Internet 
650 7 |a Classification Methods  |2 imf 
650 7 |a Cluster Analysis  |2 imf 
650 7 |a Factor Models  |2 imf 
650 7 |a Principal Components  |2 imf 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2018/209 
856 4 0 |z Full text available on IMF  |u http://elibrary.imf.org/view/journals/001/2018/209/001.2018.issue-209-en.xml  |z IMF e-Library