Impact of COVID-19 : Nowcasting and Big Data to Track Economic Activity in Sub-Saharan Africa /

The COVID-19 pandemic underscores the critical need for detailed, timely information on its evolving economic impacts, particularly for Sub-Saharan Africa (SSA) where data availability and lack of generalizable nowcasting methodologies limit efforts for coordinated policy responses. This paper prese...

ver descrição completa

Detalhes bibliográficos
Autor principal: Buell, Brandon
Outros Autores: Chen, Carissa, Cherif, Reda, Walentin, Karl
Formato: Periódico
Idioma:English
Publicado em: Washington, D.C. : International Monetary Fund, 2021.
Colecção:IMF Working Papers; Working Paper ; No. 2021/124
Assuntos:
Acesso em linha:Full text available on IMF
LEADER 02481cas a2200337 a 4500
001 AALejournalIMF021695
008 230101c9999 xx r poo 0 0eng d
020 |c 18.00 USD 
020 |z 9781513582498 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Buell, Brandon. 
245 1 0 |a Impact of COVID-19 :   |b Nowcasting and Big Data to Track Economic Activity in Sub-Saharan Africa /  |c Brandon Buell, Reda Cherif, Carissa Chen, Karl Walentin. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2021. 
300 |a 1 online resource (61 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a The COVID-19 pandemic underscores the critical need for detailed, timely information on its evolving economic impacts, particularly for Sub-Saharan Africa (SSA) where data availability and lack of generalizable nowcasting methodologies limit efforts for coordinated policy responses. This paper presents a suite of high frequency and granular country-level indicator tools that can be used to nowcast GDP and track changes in economic activity for countries in SSA. We make two main contributions: (1) demonstration of the predictive power of alternative data variables such as Google search trends and mobile payments, and (2) implementation of two types of modelling methodologies, machine learning and parametric factor models, that have flexibility to incorporate mixed-frequency data variables. We present nowcast results for 2019Q4 and 2020Q1 GDP for Kenya, Nigeria, South Africa, Uganda, and Ghana, and argue that our factor model methodology can be generalized to nowcast and forecast GDP for other SSA countries with limited data availability and shorter timeframes. 
538 |a Mode of access: Internet 
650 7 |a Classification Methods  |2 imf 
650 7 |a Cluster Analysis  |2 imf 
650 7 |a Foreign Exchange  |2 imf 
650 7 |a Informal Economy  |2 imf 
650 7 |a Underground Econom  |2 imf 
700 1 |a Chen, Carissa. 
700 1 |a Cherif, Reda. 
700 1 |a Walentin, Karl. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2021/124 
856 4 0 |z Full text available on IMF  |u http://elibrary.imf.org/view/journals/001/2021/124/001.2021.issue-124-en.xml  |z IMF e-Library