Improving the Short-term Forecast of World Trade During the Covid-19 Pandemic Using Swift Data on Letters of Credit /

An essential element of the work of the Fund is to monitor and forecast international trade. This paper uses SWIFT messages on letters of credit, together with crude oil prices and new export orders of manufacturing Purchasing Managers' Index (PMI), to improve the short-term forecast of interna...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Carton, Benjamin
Άλλοι συγγραφείς: Hu, Nan, Mongardini, Joannes, Moriya, Kei
Μορφή: Επιστημονικό περιοδικό
Γλώσσα:English
Έκδοση: Washington, D.C. : International Monetary Fund, 2020.
Σειρά:IMF Working Papers; Working Paper ; No. 2020/247
Διαθέσιμο Online:Full text available on IMF
LEADER 01848cas a2200277 a 4500
001 AALejournalIMF021343
008 230101c9999 xx r poo 0 0eng d
020 |c 5.00 USD 
020 |z 9781513561196 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Carton, Benjamin. 
245 1 0 |a Improving the Short-term Forecast of World Trade During the Covid-19 Pandemic Using Swift Data on Letters of Credit /  |c Benjamin Carton, Nan Hu, Joannes Mongardini, Kei Moriya. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2020. 
300 |a 1 online resource (71 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a An essential element of the work of the Fund is to monitor and forecast international trade. This paper uses SWIFT messages on letters of credit, together with crude oil prices and new export orders of manufacturing Purchasing Managers' Index (PMI), to improve the short-term forecast of international trade. A horse race between linear regressions and machine-learning algorithms for the world and 40 large economies shows that forecasts based on linear regressions often outperform those based on machine-learning algorithms, confirming the linear relationship between trade and its financing through letters of credit. 
538 |a Mode of access: Internet 
700 1 |a Hu, Nan. 
700 1 |a Mongardini, Joannes. 
700 1 |a Moriya, Kei. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2020/247 
856 4 0 |z Full text available on IMF  |u http://elibrary.imf.org/view/journals/001/2020/247/001.2020.issue-247-en.xml  |z IMF e-Library