Intelligent Export Diversification : An Export Recommendation System with Machine Learning /

This paper presents a set of collaborative filtering algorithms that produce product recommendations to diversify and optimize a country's export structure in support of sustainable long-term growth. The recommendation system is able to accurately predict the historical trends in export content...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsman: Che, Natasha
Materialtyp: Tidskrift
Språk:English
Publicerad: Washington, D.C. : International Monetary Fund, 2020.
Serie:IMF Working Papers; Working Paper ; No. 2020/175
Länkar:Full text available on IMF
LEADER 01604cas a2200241 a 4500
001 AALejournalIMF021219
008 230101c9999 xx r poo 0 0eng d
020 |c 5.00 USD 
020 |z 9781513555959 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Che, Natasha. 
245 1 0 |a Intelligent Export Diversification :   |b An Export Recommendation System with Machine Learning /  |c Natasha Che. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2020. 
300 |a 1 online resource (46 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a This paper presents a set of collaborative filtering algorithms that produce product recommendations to diversify and optimize a country's export structure in support of sustainable long-term growth. The recommendation system is able to accurately predict the historical trends in export content and structure for high-growth countries, such as China, India, Poland, and Chile, over 20-year spans. As a contemporary case study, the system is applied to Paraguay, to create recommendations for the country's export diversification strategy. 
538 |a Mode of access: Internet 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2020/175 
856 4 0 |z Full text available on IMF  |u http://elibrary.imf.org/view/journals/001/2020/175/001.2020.issue-175-en.xml  |z IMF e-Library