Predictive Density Aggregation : A Model for Global GDP Growth /

In this paper we propose a novel approach to obtain the predictive density of global GDP growth. It hinges upon a bottom-up probabilistic model that estimates and combines single countries' predictive GDP growth densities, taking into account cross-country interdependencies. Speci?cally, we mod...

Szczegółowa specyfikacja

Opis bibliograficzny
1. autor: Caselli, Francesca
Kolejni autorzy: Grigoli, Francesco, Lafarguette, Romain, Wang, Changchun
Format: Czasopismo
Język:English
Wydane: Washington, D.C. : International Monetary Fund, 2020.
Seria:IMF Working Papers; Working Paper ; No. 2020/078
Hasła przedmiotowe:
Dostęp online:Full text available on IMF
LEADER 02467cas a2200349 a 4500
001 AALejournalIMF020974
008 230101c9999 xx r poo 0 0eng d
020 |c 5.00 USD 
020 |z 9781513545653 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Caselli, Francesca. 
245 1 0 |a Predictive Density Aggregation :   |b A Model for Global GDP Growth /  |c Francesca Caselli, Francesco Grigoli, Romain Lafarguette, Changchun Wang. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2020. 
300 |a 1 online resource (33 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a In this paper we propose a novel approach to obtain the predictive density of global GDP growth. It hinges upon a bottom-up probabilistic model that estimates and combines single countries' predictive GDP growth densities, taking into account cross-country interdependencies. Speci?cally, we model non-parametrically the contemporaneous interdependencies across the United States, the euro area, and China via a conditional kernel density estimation of a joint distribution. Then, we characterize the potential ampli?cation e?ects stemming from other large economies in each region-also with kernel density estimations-and the reaction of all other economies with para-metric assumptions. Importantly, each economy's predictive density also depends on a set of observable country-speci?c factors. Finally, the use of sampling techniques allows us to aggregate individual countries' densities into a world aggregate while preserving the non-i.i.d. nature of the global GDP growth distribution. Out-of-sample metrics con?rm the accuracy of our approach. 
538 |a Mode of access: Internet 
650 7 |a Density Aggregation  |2 imf 
650 7 |a Density Evaluation  |2 imf 
650 7 |a GDP Growth  |2 imf 
650 7 |a Math Display  |2 imf 
650 7 |a WP  |2 imf 
651 7 |a United States  |2 imf 
700 1 |a Grigoli, Francesco. 
700 1 |a Lafarguette, Romain. 
700 1 |a Wang, Changchun. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2020/078 
856 4 0 |z Full text available on IMF  |u http://elibrary.imf.org/view/journals/001/2020/078/001.2020.issue-078-en.xml  |z IMF e-Library