An Algorithmic Crystal Ball : Forecasts-based on Machine Learning /

Forecasting macroeconomic variables is key to developing a view on a country's economic outlook. Most traditional forecasting models rely on fitting data to a pre-specified relationship between input and output variables, thereby assuming a specific functional and stochastic process underlying...

Полное описание

Библиографические подробности
Главный автор: Jung, Jin-Kyu
Другие авторы: Patnam, Manasa, Ter-Martirosyan, Anna
Формат: Журнал
Язык:English
Опубликовано: Washington, D.C. : International Monetary Fund, 2018.
Серии:IMF Working Papers; Working Paper ; No. 2018/230
Предметы:
Online-ссылка:Full text available on IMF
LEADER 02205cas a2200337 a 4500
001 AALejournalIMF018810
008 230101c9999 xx r poo 0 0eng d
020 |c 5.00 USD 
020 |z 9781484380635 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Jung, Jin-Kyu. 
245 1 3 |a An Algorithmic Crystal Ball :   |b Forecasts-based on Machine Learning /  |c Jin-Kyu Jung, Manasa Patnam, Anna Ter-Martirosyan. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2018. 
300 |a 1 online resource (34 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a Forecasting macroeconomic variables is key to developing a view on a country's economic outlook. Most traditional forecasting models rely on fitting data to a pre-specified relationship between input and output variables, thereby assuming a specific functional and stochastic process underlying that process. We pursue a new approach to forecasting by employing a number of machine learning algorithms, a method that is data driven, and imposing limited restrictions on the nature of the true relationship between input and output variables. We apply the Elastic Net, SuperLearner, and Recurring Neural Network algorithms on macro data of seven, broadly representative, advanced and emerging economies and find that these algorithms can outperform traditional statistical models, thereby offering a relevant addition to the field of economic forecasting. 
538 |a Mode of access: Internet 
650 7 |a Machine Learning Algorithm  |2 imf 
650 7 |a Real GDP  |2 imf 
650 7 |a Test Data  |2 imf 
650 7 |a Time Series  |2 imf 
650 7 |a WP  |2 imf 
651 7 |a United States  |2 imf 
700 1 |a Patnam, Manasa. 
700 1 |a Ter-Martirosyan, Anna. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2018/230 
856 4 0 |z Full text available on IMF  |u http://elibrary.imf.org/view/journals/001/2018/230/001.2018.issue-230-en.xml  |z IMF e-Library