Seeing in the Dark : A Machine-Learning Approach to Nowcasting in Lebanon /
Macroeconomic analysis in Lebanon presents a distinct challenge. For example, long delays in the publication of GDP data mean that our analysis often relies on proxy variables, and resembles an extended version of the 'nowcasting' challenge familiar to many central banks. Addressing this p...
Autor Principal: | Tiffin, Andrew |
---|---|
Formato: | Revista |
Idioma: | English |
Publicado: |
Washington, D.C. :
International Monetary Fund,
2016.
|
Series: | IMF Working Papers; Working Paper ;
No. 2016/056 |
Subjects: | |
Acceso en liña: | Full text available on IMF |
Títulos similares
-
On the Macroeconomic Consequences of Over-Optimism /
por: Beaudry, Paul
Publicado: (2018) -
The Status of GDP Compilation Practices in 189 Economies and the Relevance for Policy Analysis /
por: Berry, Francien
Publicado: (2018) -
Regional Growth in Mexico : 1970-1993 /
por: Juan-Ramon, V.
Publicado: (1996) -
Natural Resource Endowments, Governance, and the Domestic Revenue Effort : Evidence from a Panel of Countries /
por: Thornton, John
Publicado: (2008) -
The More the Merrier? : A Machine Learning Algorithm for Optimal Pooling of Panel Data /
por: Bolhuis, Marijn
Publicado: (2020)