The More the Merrier? : A Machine Learning Algorithm for Optimal Pooling of Panel Data /

We leverage insights from machine learning to optimize the tradeoff between bias and variance when estimating economic models using pooled datasets. Specifically, we develop a simple algorithm that estimates the similarity of economic structures across countries and selects the optimal pool of count...

Descrizione completa

Dettagli Bibliografici
Autore principale: Bolhuis, Marijn
Altri autori: Rayner, Brett
Natura: Periodico
Lingua:English
Pubblicazione: Washington, D.C. : International Monetary Fund, 2020.
Serie:IMF Working Papers; Working Paper ; No. 2020/044
Soggetti:
Accesso online:Full text available on IMF
LEADER 02067cas a2200325 a 4500
001 AALejournalIMF016237
008 230101c9999 xx r poo 0 0eng d
020 |c 5.00 USD 
020 |z 9781513529974 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Bolhuis, Marijn. 
245 1 4 |a The More the Merrier? :   |b A Machine Learning Algorithm for Optimal Pooling of Panel Data /  |c Marijn Bolhuis, Brett Rayner. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2020. 
300 |a 1 online resource (21 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a We leverage insights from machine learning to optimize the tradeoff between bias and variance when estimating economic models using pooled datasets. Specifically, we develop a simple algorithm that estimates the similarity of economic structures across countries and selects the optimal pool of countries to maximize out-of-sample prediction accuracy of a model. We apply the new alogrithm by nowcasting output growth with a panel of 102 countries and are able to significantly improve forecast accuracy relative to alternative pools. The algortihm improves nowcast performance for advanced economies, as well as emerging market and developing economies, suggesting that machine learning techniques using pooled data could be an important macro tool for many countries. 
538 |a Mode of access: Internet 
650 7 |a Algorithm  |2 imf 
650 7 |a Country  |2 imf 
650 7 |a GDP Growth  |2 imf 
650 7 |a Machine Learning  |2 imf 
650 7 |a WP  |2 imf 
651 7 |a Costa Rica  |2 imf 
700 1 |a Rayner, Brett. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2020/044 
856 4 0 |z Full text available on IMF  |u http://elibrary.imf.org/view/journals/001/2020/044/001.2020.issue-044-en.xml  |z IMF e-Library