Completing the Market : Generating Shadow CDS Spreads by Machine Learning /

We compared the predictive performance of a series of machine learning and traditional methods for monthly CDS spreads, using firms' accounting-based, market-based and macroeconomics variables for a time period of 2006 to 2016. We find that ensemble machine learning methods (Bagging, Gradient B...

Descripción completa

Detalles Bibliográficos
Autor principal: Hu, Nan
Otros Autores: Li, Jian, Meyer-Cirkel, Alexis
Formato: Revista
Lenguaje:English
Publicado: Washington, D.C. : International Monetary Fund, 2019.
Colección:IMF Working Papers; Working Paper ; No. 2019/292
Acceso en línea:Full text available on IMF
LEADER 01888cas a2200265 a 4500
001 AALejournalIMF016123
008 230101c9999 xx r poo 0 0eng d
020 |c 5.00 USD 
020 |z 9781513524085 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Hu, Nan. 
245 1 0 |a Completing the Market :   |b Generating Shadow CDS Spreads by Machine Learning /  |c Nan Hu, Jian Li, Alexis Meyer-Cirkel. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2019. 
300 |a 1 online resource (37 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a We compared the predictive performance of a series of machine learning and traditional methods for monthly CDS spreads, using firms' accounting-based, market-based and macroeconomics variables for a time period of 2006 to 2016. We find that ensemble machine learning methods (Bagging, Gradient Boosting and Random Forest) strongly outperform other estimators, and Bagging particularly stands out in terms of accuracy. Traditional credit risk models using OLS techniques have the lowest out-of-sample prediction accuracy. The results suggest that the non-linear machine learning methods, especially the ensemble methods, add considerable value to existent credit risk prediction accuracy and enable CDS shadow pricing for companies missing those securities. 
538 |a Mode of access: Internet 
700 1 |a Li, Jian. 
700 1 |a Meyer-Cirkel, Alexis. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2019/292 
856 4 0 |z Full text available on IMF  |u http://elibrary.imf.org/view/journals/001/2019/292/001.2019.issue-292-en.xml  |z IMF e-Library