Kernel Density Estimation Based on Grouped Data : The Case of Poverty Assessment /

We analyze the performance of kernel density methods applied to grouped data to estimate poverty (as applied in Sala-i-Martin, 2006, QJE). Using Monte Carlo simulations and household surveys, we find that the technique gives rise to biases in poverty estimates, the sign and magnitude of which vary w...

Description complète

Détails bibliographiques
Auteur principal: Minoiu, Camelia
Autres auteurs: Reddy, Sanjay
Format: Revue
Langue:English
Publié: Washington, D.C. : International Monetary Fund, 2008.
Collection:IMF Working Papers; Working Paper ; No. 2008/183
Accès en ligne:Full text available on IMF

Documents similaires