Kernel Density Estimation Based on Grouped Data : The Case of Poverty Assessment /

We analyze the performance of kernel density methods applied to grouped data to estimate poverty (as applied in Sala-i-Martin, 2006, QJE). Using Monte Carlo simulations and household surveys, we find that the technique gives rise to biases in poverty estimates, the sign and magnitude of which vary w...

Ful tanımlama

Detaylı Bibliyografya
Yazar: Minoiu, Camelia
Diğer Yazarlar: Reddy, Sanjay
Materyal Türü: Dergi
Dil:English
Baskı/Yayın Bilgisi: Washington, D.C. : International Monetary Fund, 2008.
Seri Bilgileri:IMF Working Papers; Working Paper ; No. 2008/183
Online Erişim:Full text available on IMF
LEADER 01784cas a2200253 a 4500
001 AALejournalIMF005239
008 230101c9999 xx r poo 0 0eng d
020 |c 5.00 USD 
020 |z 9781451870411 
022 |a 1018-5941 
040 |a BD-DhAAL  |c BD-DhAAL 
100 1 |a Minoiu, Camelia. 
245 1 0 |a Kernel Density Estimation Based on Grouped Data :   |b The Case of Poverty Assessment /  |c Camelia Minoiu, Sanjay Reddy. 
264 1 |a Washington, D.C. :  |b International Monetary Fund,  |c 2008. 
300 |a 1 online resource (34 pages) 
490 1 |a IMF Working Papers 
500 |a <strong>Off-Campus Access:</strong> No User ID or Password Required 
500 |a <strong>On-Campus Access:</strong> No User ID or Password Required 
506 |a Electronic access restricted to authorized BRAC University faculty, staff and students 
520 3 |a We analyze the performance of kernel density methods applied to grouped data to estimate poverty (as applied in Sala-i-Martin, 2006, QJE). Using Monte Carlo simulations and household surveys, we find that the technique gives rise to biases in poverty estimates, the sign and magnitude of which vary with the bandwidth, the kernel, the number of datapoints, and across poverty lines. Depending on the chosen bandwidth, the USD 1/day poverty rate in 2000 varies by a factor of 1.8, while the USD 2/day headcount in 2000 varies by 287 million people. Our findings challenge the validity and robustness of poverty estimates derived through kernel density estimation on grouped data. 
538 |a Mode of access: Internet 
700 1 |a Reddy, Sanjay. 
830 0 |a IMF Working Papers; Working Paper ;  |v No. 2008/183 
856 4 0 |z Full text available on IMF  |u http://elibrary.imf.org/view/journals/001/2008/183/001.2008.issue-183-en.xml  |z IMF e-Library