Quantum theory for mathematicians /

Bibliographic Details
Main Author: Hall, Brian C. (Author)
Format: Book
Language:English
Published: New York : Springer, 2013.
Series:Graduate texts in mathematics, 267.
Subjects:
Classic Catalogue: View this record in Classic Catalogue
LEADER 08042nam a2200409 i 4500
001 44097
003 BD-DhAAL
005 20250213162241.0
008 130405t20132013nyua b 001 0 eng c
010 |a  2013937175 
016 7 |a 016488175  |2 Uk 
020 |a 9781461471158 (acidfree paper) 
020 |a 146147115X (acidfree paper) 
020 |a 9781461471165 
035 |a (OCoLC)ocn828487961 
040 |a BTCTA  |b eng  |c BTCTA  |e rda  |d YDXCP  |d CSA  |d OHX  |d TXA  |d OCLCQ  |d UKMGB  |d STF  |d HEBIS  |d IQU  |d PUL  |d OCLCF  |d IXA  |d DLC  |d BD-DhAAL 
042 |a pcc 
050 0 0 |a QC174.12  |b .H346 2013 
072 7 |a QA  |2 lcco 
082 |a 530.12  |2 22 
100 1 |a Hall, Brian C.,  |e author.  |9 21848 
245 1 0 |a Quantum theory for mathematicians /  |c Brian C. Hall. 
260 |a New York :  |b Springer,  |c 2013. 
300 |a xvi, 554 pages :  |b illustrations ;  |c 24 cm 
490 1 |a Graduate texts in mathematics,  |x 0072-5285 ;  |v 267 
504 |a Includes bibliographical references (pages 545-548) and index. 
505 0 0 |t The experimental origins of quantum mechanics:  |t Is light a wave or a particle? ;  |t Is an electron a wave or a particle? ;  |t Schrödinger and Heisenberg ;  |t A matter of interpretation ;  |g Exercises --  |t A first approach to classical mechanics:  |t Motion in R¹ ;  |t Motion in R[superscript n] ;  |t Systems of particles ;  |t Angular momentum ;  |t Poisson brackets and Hamiltonian mechanics ;  |t The Kepler problem and the Runge-Lenz vector ;  |g Exercises --  |t First approach to quantum mechanics:  |t Waves, particles, and probabilities ;  |t A few words about operators and their adjoints ;  |t Position and the position operator ;  |t Momentum and the momentum operator ;  |t The position and momentum operators ;  |t Axioms of quantum mechanics : operators and measurements ;  |t Time-evolution in quantum theory ;  |t The Heisenberg picture ;  |t Example : a particle in a box ;  |t Quantum mechanics for a particle in R [superscript n] ;  |t Systems of multiple particles ;  |t Physics notation ;  |g Exercises --  |t The free Schrödinger equation:  |t Solution by means of the Fourier transform ;  |t Solution as a convolution ;  |t Propagation of the wave packet : first approach ;  |t Propagation of the wave packet : second approach ;  |t Spread of the wave packet ;  |g Exercises --  |t Particle in a square well:  |t The time-independent Schrödinger equation ;  |t Domain questions and the matching conditions ;  |t Finding square-integrable solutions ;  |t Tunneling and the classically forbidden region ;  |t Discrete and continuous spectrum ;  |g Exercises --  |t Perspectives on the spectral theorem:  |t The difficulties with the infinite-dimensional case ;  |t The goals of spectral theory ;  |t A guide to reading ;  |t The position operator ;  |t Multiplication operators ;  |t The momentum operator --  |t The spectral theorem for bounded self-adjoint operators : statements:  |t Elementary properties of bounded operators ;  |t Spectral theorem for bounded self-adjoint operators, I ;  |t Spectral theorem for bounded self-adjoint operators, II ;  |g Exercises --  |t The spectral theorem for bounded self-adjoint operators : proofs:  |t Proof of the spectral theorem, first version ;  |t Proof of the spectral theorem, second version ;  |g Exercises --  |t Unbounded self-adjoint operators:  |g Introduction ;  |t Adjoint and closure of an unbounded operator ;  |t Elementary properties of adjoints and closed operators ;  |t The spectrum of an unbounded operator ;  |t Conditions for self-adjointness and essential self-adjointness ;  |t A counterexample ;  |t An example ;  |t The basic operators of quantum mechanics ;  |t Sums of self-adjoint operators ;  |t Another counterexample ;  |g Exercises --  |t The spectral theorem for unbounded self-adjoint operators:  |t Statements of the spectral theorem ;  |t Stone's theorem and one-parameter unitary groups ;  |t The spectral theorem for bounded normal operators ;  |t Proof of the spectral theorem for unbounded self-adjoint operators ;  |g Exercises --  |t The harmonic oscillator:  |t The role of the harmonic oscillator ;  |t The algebraic approach ;  |t The analytic approach ;  |t Domain conditions and completeness ;  |g Exercises --  |t The uncertainty principle:  |t Uncertainty principle, first version ;  |t A counterexample ;  |t Uncertainty principle, second version ;  |t Minimum uncertainty states ;  |g Exercises --  |t Quantization schemes for Euclidean space:  |t Ordering ambiguities ;  |t Some common quantization schemes ;  |t The Weyl quantization for R²[superscript n] ;  |t The "No go" theorem of Groenewold ;  |g Exercises --  |t The Stone-Von Neumann theorem:  |t A heuristic argument ;  |t The exponentiated commutation relations ;  |t The theorem ;  |t The Segal-Bargmann space ;  |g Exercises --  |t The WKB approximation:  |g Introduction ;  |t The old quantum theory and the Bohr-Sommerfeld condition ;  |t Classical and semiclassical approximations ;  |t The WKB approximation away from the turning points ;  |t The Airy function and the connection formulas ;  |t A rigorous error estimate ;  |t Other approaches ;  |g Exercises --  |t Lie groups, Lie algebras, and representations:  |g Summary ;  |t Matrix Lie groups ;  |t Lie algebras ;  |t The matrix exponential ;  |t The Lie algebra of a matrix Lie group ;  |t Relationships between Lie groups and Lie algebras ;  |t Finite-dimensional representations of Lie groups and Lie algebras ;  |t New representations from old ;  |t Infinite-dimensional unitary representations ;  |g Exercises --  |t Angular momentum and spin:  |t The role of angular momentum in quantum mechanics ;  |t The angular momentum operators in R³ ;  |t Angular momentum from the Lie algebra point of view ;  |t The irreducible representations of so(3) ;  |t The irreducible representations of SO(3) ;  |t Realizing the representations inside L²(S²) --  |t Realizing the representations inside L²(M³) ;  |t Spin ;  |t Tensor products of representations : "addition of angular momentum" ;  |t Vectors and vector operators ;  |g Exercises --  |t Radial potentials and the hydrogen atom:  |t Radial potentials ;  |t The hydrogen atom : preliminaries ;  |t The bound states of the hydrogen atom ;  |t The Runge-Lenz vector in the quantum Kepler problem ;  |t The role of spin ;  |t Runge-Lenz calculations ;  |g Exercises --  |t Systems and subsystems, multiple particles:  |g Introduction ;  |t Trace-class and Hilbert-Schmidt operators ;  |t Density matrices : the general notion of the state of a quantum system ;  |t Modified axioms for quantum mechanics ;  |t Composite systems and the tensor product ;  |t Multiple particles : bosons and fermions ;  |t "Statistics" and the Pauli exclusion principle ;  |g Exercises --  |t The path integral formulation of quantum mechanics:  |t Trotter product formula ;  |t Formal derivation of the Feynman path integral ;  |t The imaginary-time calculation ;  |t The Wiener measure ;  |t The Feynman-Kac formula ;  |t Path integrals in quantum field theory ;  |g Exercises --  |t Hamiltonian mechanics on manifolds:  |t Calculus on manifolds ;  |t Mechanics on symplectic manifolds ;  |g Exercises --  |t Geometric quantization on Euclidean space:  |g Introduction ;  |t Prequantization ;  |t Problems with prequantization ;  |t Quantization ;  |t Quantization of observables ;  |g Exercises --  |t Geometric quantization on manifolds:  |g Introduction ;  |t Line bundles and connections ;  |t Prequantization ;  |t Polarizations ;  |t Quantization without half-forms ;  |t Quantization with half-forms : the real case ;  |t Quantization with half-forms : the complex case ;  |t Pairing maps ;  |g Exercises --  |t A review of basic material:  |t Tensor products of vector spaces ;  |t Measure theory ;  |t Elementary functional analysis ;  |t Hilbert spaces and operators on them. 
526 |a CSE  |x Sowmitra Das Lecturer, Department of Computer Science Course name : Quantum Computing I (CSE 481) 
541 |a Book Finder International.  |c 44097 
650 0 |a Quantum theory  |x Mathematics.  |9 39415 
650 0 |a Quantum theory. 
650 0 |a Mathematical physics. 
650 0 |a Computer science. 
830 0 |a Graduate texts in mathematics,  |x 0072-5285 ;  |v 267. 
942 |2 ddc  |c BK 
999 |c 47003  |d 47003 
952 |0 0  |1 0  |2 ddc  |4 0  |6 530_120000000000000_HAL  |7 0  |9 77326  |a BRACUL  |b BRACUL  |c GEN  |d 2025-02-04  |e Book Finder International   |g 5535.00  |l 0  |o 530.12 HAL  |p 3010044097  |r 2025-02-04  |t 1  |v 5535.00  |w 2025-02-04  |y BK  |x Requisitioned by Sowmitra Das for the course named- ''Quantum Computing I (CSE 481)''.