Understanding machine learning : from theory to algorithms /

"Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundament...

Full description

Bibliographic Details
Main Author: Shalev-Shwartz, Shai
Other Authors: Ben-David, Shai
Format: Book
Language:English
Published: New York, NY, USA ; India : Cambridge University Press, 2014. [Reprinted 2022]
Edition:First south asia edition 2015
Subjects:
Classic Catalogue: View this record in Classic Catalogue
LEADER 04546nam a2200421 i 4500
001 40939
003 BD-DhAAL
005 20230220215106.0
008 230220r20222014nyua b 001 0 eng
010 |a  2014001779 
020 |a 9781107057135 (hardback) 
020 |a 1107057132 (hardback) 
020 |a 9781107512825 
040 |a DLC  |b eng  |c DLC  |e rda  |d DLC  |d BD-DhAAL 
042 |a pcc 
082 0 0 |a 006.31  |2 23 
100 1 |a Shalev-Shwartz, Shai.  |9 53683 
245 1 0 |a Understanding machine learning :  |b from theory to algorithms /  |c Shai Shalev-Shwartz and Shai Ben-David 
250 |a First south asia edition 2015 
260 |a New York, NY, USA ;  |a India :  |b Cambridge University Press,  |c 2014. [Reprinted 2022] 
300 |a xvi, 397 pages :  |b illustrations ;  |c 26 cm. 
504 |a Includes bibliographical references (pages 385-393) and index. 
505 8 |a Machine generated contents note: 1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity tradeoff; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra. 
520 |a "Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering"-- 
526 |a CSE 
541 |a Book Finder  |e 40939, 40940, 40941, 40942, 40943 
650 0 |a Machine learning. 
650 0 |a Algorithms. 
650 7 |a COMPUTERS / Computer Vision & Pattern Recognition.  |2 bisacsh  |9 53684 
700 1 |a Ben-David, Shai.  |9 53685 
852 |a Ayesha Abed Library  |c General Stacks 
942 |2 ddc  |c BK 
999 |c 44780  |d 44780 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_310000000000000_SHA  |7 0  |9 73171  |a BRACUL  |b BRACUL  |c GEN  |d 2023-02-07  |e Book Finder  |g 1427.71  |l 4  |m 44  |o 006.31 SHA  |p 3010040940  |r 2025-01-04  |s 2024-12-31  |t 2  |v 1427.71  |w 2023-02-07  |y BK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_310000000000000_SHA  |7 0  |9 73172  |a BRACUL  |b BRACUL  |c GEN  |d 2023-02-07  |e Book Finder  |g 1427.71  |l 5  |m 56  |o 006.31 SHA  |p 3010040941  |q 2025-03-04  |r 2024-11-23  |s 2024-11-23  |t 3  |v 1427.71  |w 2023-02-07  |y BK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_310000000000000_SHA  |7 0  |9 73173  |a BRACUL  |b BRACUL  |c GEN  |d 2023-02-07  |e Book Finder  |g 1427.71  |l 6  |m 66  |o 006.31 SHA  |p 3010040942  |q 2025-03-04  |r 2024-11-12  |s 2024-11-12  |t 4  |v 1427.71  |w 2023-02-07  |y BK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_310000000000000_SHA  |7 0  |9 73174  |a BRACUL  |b BRACUL  |c GEN  |d 2023-02-07  |e Book Finder  |g 1427.71  |l 5  |m 44  |o 006.31 SHA  |p 3010040939  |q 2025-03-04  |r 2025-02-18  |s 2025-02-18  |t 1  |v 1427.71  |w 2023-02-07  |y BK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_310000000000000_SHA  |7 0  |9 73175  |a BRACUL  |b BRACUL  |c GEN  |d 2023-02-07  |e Book Finder  |g 1427.71  |l 4  |m 54  |o 006.31 SHA  |p 3010040943  |q 2025-03-02  |r 2024-11-02  |s 2024-11-02  |t 5  |v 1427.71  |w 2023-02-07  |y BK