The Data Science Design Manual /

This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and...

詳細記述

書誌詳細
第一著者: Skiena, Steven S.
団体著者: SpringerLink (Online service)
フォーマット: 図書
言語:English
出版事項: Cham, Switzerland : Springer, c2017
シリーズ:Texts in Computer Science,
主題:
Classic Catalogue: View this record in Classic Catalogue
LEADER 04316nam a22005655i 4500
001 36614
003 BD-DhAAL
005 20191208162458.0
008 191118t2017 gw | o |||| 0|eng d
999 |c 41738  |d 41738 
020 |a 9783319554433 (print) 
020 |a 9783319554440 
024 7 |a 10.1007/978-3-319-55444-0  |2 doi 
035 |a (WaSeSS)OCM1ssj0001846412 
035 |a 10029592 
035 |a (OCoLC)992989152 
040 |d WaSeSS  |b eng  |d NIC  |d BD-DhAAL 
050 4 |a QA76.9.D343 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Skiena, Steven S.  |9 37243 
245 1 4 |a The Data Science Design Manual /  |c Steven S. Skiena. 
260 |a Cham, Switzerland :  |b Springer,  |c c2017 
300 |a xvii, 445 pages :  |b illustrations ;  |c 24 cm 
490 1 |a Texts in Computer Science,  |x 1868-0941 
505 0 |a What is Data Science? -- Mathematical Preliminaries -- Data Munging -- Scores and Rankings -- Statistical Analysis -- Visualizing Data -- Mathematical Models -- Linear Algebra -- Linear and Logistic Regression -- Distance and Network Methods -- Machine Learning -- Big Data: Achieving Scale. 
506 |a License restrictions may limit access. 
520 |a This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an (3)4z(BIntroduction to Data Science(3)4y (Bcourse. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains (3)4z(BWar Stories,(3)4y (Boffering perspectives on how data science applies in the real world Includes (3)4z(BHomework Problems,(3)4y (Bproviding a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides (3)4z(BTake-Home Lessons,(3)4y (Bemphasizing the big-picture concepts to learn from each chapter Recommends exciting (3)4z(BKaggle Challenges(3)4y (Bfrom the online platform Kaggle Highlights (3)4z(BFalse Starts,(3)4y (Brevealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show (3)4z(BThe Quant Shop(3)4y ((Bwww.quant-shop.com). 
526 |a CSE 
541 |a Trim Education  |e 36614, 36615 
650 0 |a Computer science.  |9 37244 
650 0 |a Big data.  |9 37245 
650 0 |a Data mining.  |9 37246 
650 0 |a Pattern recognition.  |9 37247 
650 0 |a Mathematics.  |9 37248 
650 0 |a Visualization.  |9 37249 
650 0 |a Statistics.  |9 37250 
650 1 4 |a Computer Science.  |9 37251 
650 2 4 |a Data Mining and Knowledge Discovery.  |9 37252 
650 2 4 |a Pattern Recognition.  |9 37253 
650 2 4 |a Big Data/Analytics.  |9 37254 
650 2 4 |a Visualization.  |9 37249 
650 2 4 |a Statistics and Computing/Statistics Programs.  |9 37255 
650 7 |a Mathematical statistics  |x Data processing.  |2 fast  |9 37256 
710 2 |a SpringerLink (Online service)  |9 37257 
830 0 |a Texts in Computer Science,  |9 37258 
852 |a Ayesha Abed Library  |c General Stacks 
942 |2 ddc  |c BK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_312000000000000_SKI  |7 0  |9 67082  |a BRACUL  |b BRACUL  |c GEN  |d 2019-11-06  |e Trim Education  |g 3645.00  |l 6  |m 72  |o 006.312 SKI  |p 3010036614  |q 2025-03-06  |r 2024-12-15  |s 2024-12-15  |t 1  |v 3645.00  |w 2019-11-06  |y BK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_312000000000000_SKI  |7 0  |9 67083  |a BRACUL  |b BRACUL  |c GEN  |d 2019-11-06  |e Trim Education  |g 3645.00  |l 4  |m 59  |o 006.312 SKI  |p 3010036615  |q 2025-02-27  |r 2024-06-06  |s 2024-06-06  |t 2  |v 3645.00  |w 2019-11-06  |y BK