Introduction to real analysis /

"This text provides the fundamental concepts and techniques of real analysis for students in all of these areas. It helps one develop the ability to think deductively, analyse mathematical situations and extend ideas to a new context. Like the first three editions, this edition maintains the sa...

Full description

Bibliographic Details
Main Author: Bartle, Robert Gardner, 1927-
Other Authors: Sherbert, Donald R., 1935-
Format: Book
Language:English
Published: Hoboken, NJ : Wiley, 2015 [reprinted 2018]
Edition:Fourth edition
Subjects:
Classic Catalogue: View this record in Classic Catalogue
LEADER 04222nam a22003854a 4500
001 34638
003 BD-DhAAL
005 20190509095035.0
008 190509r20152018njua b 001 0 eng d
999 |c 40728  |d 40728 
010 |a  2010045251 
020 |a 9788126551811 
020 |a 9780471433316 (hardback) 
020 |a 0471433314 (hardback) 
035 |a (OCoLC)ocn671573454 
040 |a DLC  |c DLC  |d YDX  |d YDXCP  |d BWX  |d CUS  |d CDX  |d IUL  |d DLC  |d BD-DhAAL 
042 |a pcc 
050 0 0 |a QA300  |b .B294 2011 
082 0 0 |a 515  |2 22 
100 1 |a Bartle, Robert Gardner,  |d 1927-  |9 31557 
245 1 0 |a Introduction to real analysis /  |c Robert G. Bartle, Donald R. Sherbert. 
250 |a Fourth edition 
260 |a Hoboken, NJ :  |b Wiley,  |c 2015 [reprinted 2018] 
300 |a xiii, 402 pages :  |b illustrations ;  |c 26 cm. 
504 |a Includes bibliographical references and index. 
505 0 |a Ch. 1.Preliminaries: 1.1. Sets and functions; 1.2. Mathematical induction; 1.3. Finite and infinite sets -- Ch. 2. The Real Numbers: 2.1. The algebraic and order properties of R; 2.2. Absolute value and real line; 2.3. The completeness property of R; 2.4. Applications of the supremum property; 2.5. Intervals -- Ch. 3. Sequences and series: 3.1. Sequences and their limits; 3.2. Limit theorems; 3.3. Monotone sequences; 3.4. Subsequences and the Bolzano-Weierstrass theorem; 3.5. The Cauchy criterion; 3.6. Properly divergent sequences; 3.7. Introduction to infinite series -- Ch. 4. Limits: 4.1. Limits of functions; 4.2. Limit theorems; 4.3. Some extensions of the limit concept -- Ch. 5. Continuous functions: 5.1. Continuous runctions; 5.2 . Combinations of continuous runctions; 5.3. Continuous functions on intervals; 5.4. Uniform continuity; 5.5. Continuity and gauges; 5.6. Monotone and inverse functions -- Ch. 6. Differentiation: 6.1. The derivative; 6.2. The mean value theorem; 6.3. L'Hospital's rules; 6.4. Taylor's Theorem -- Ch. 7. The Riemann integral: 7.1. Riemann integral; 7.2. Riemann integrable functions; 7.3. The fundamental theorem; 7.4. The Darboux integral; 7.5. Approximate integration -- Ch. 8. Sequences of functions: 8.1. Pointwise and uniform convergence; 8.2. Interchange of limits; 8.3. The exponential and logarithmic functions; 8.4. The trigonometric functions -- Ch. 9. Infinite series: 9.1. Absolute convergence; 9.2. Tests for absolute convergence; 9.3. Tests for nonabsolute convergence; 9.4. Series of functions -- Ch. 10. The generalized Riemann integral: 10.1. Definition and main poperties; 10.2. Improper and Lebesgue integrals; 10.3. Infinite intervals; 10.4. Convergence theorems -- Ch. 11. A glimpse into topology: 11.1. Open and closed sets in R; 11.2 Compact sets; 11.3. Continuous functions; 11.4. Metrtic Spaces -- Appendix A. Logic and proofs -- Appendix B. Finite and countable sets -- Appendix C. The Riemann and Lebesgue criteria -- Appendix D. Approximate integration -- Appendix E. Two examples. 
520 |a "This text provides the fundamental concepts and techniques of real analysis for students in all of these areas. It helps one develop the ability to think deductively, analyse mathematical situations and extend ideas to a new context. Like the first three editions, this edition maintains the same spirit and user-friendly approach with addition examples and expansion on Logical Operations and Set Theory. There is also content revision in the following areas: introducing point-set topology before discussing continuity, including a more thorough discussion of limsup and limimf, covering series directly following sequences, adding coverage of Lebesgue Integral and the construction of the reals, and drawing student attention to possible applications wherever possible"-- 
526 |a MNS 
541 |a Mullick & Brothers  |e 34638 
650 0 |a Mathematical analysis.  |9 31558 
650 0 |a Functions of real variables.  |9 31559 
700 1 |a Sherbert, Donald R.,  |d 1935-  |9 31560 
852 |a Ayesha Abed Library  |c General Stacks 
942 |2 ddc  |c BK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 515_000000000000000_BAR  |7 0  |9 65413  |a BRACUL  |b BRACUL  |c GEN  |d 2019-04-24  |e Mullick & Brothers  |g 670.00  |l 5  |m 28  |o 515 BAR  |p 3010034638  |q 2025-03-04  |r 2025-02-17  |s 2025-02-17  |t 1  |v 670.00  |w 2019-04-24  |y BK