Grokking deep learning /

"Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supp...

Full description

Bibliographic Details
Main Author: Trask, Andrew W. (Author)
Format: Book
Language:English
Published: Shelter Island, NY : Manning, ©2019.
Subjects:
Classic Catalogue: View this record in Classic Catalogue
LEADER 03574nam a22004217i 4500
001 34936
003 BD-DhAAL
005 20231030123123.0
008 190227t20192019nyua 001 0 eng d
010 |a  2018289587 
020 |a 9781617293702 (pbk.) 
020 |a 1617293709 (pbk.) 
035 |a (OCoLC)on1084981313 
040 |a SFR  |b eng  |c SFR  |e rda  |d JRZ  |d DLC  |d BD-DhAAL 
042 |a lccopycat 
050 0 0 |a QA76.87  |b .T73 2019 
082 0 4 |a 006.31 
100 1 |a Trask, Andrew W.,  |e author.  |9 33278 
245 1 0 |a Grokking deep learning /  |c Andrew W. Trask. 
246 3 0 |a Deep learning 
260 |a Shelter Island, NY :  |b Manning,  |c ©2019. 
300 |a xx, 309 pages :  |b illustrations ;  |c 24 cm. 
500 |a Includes index. 
505 0 |a Introducing deep learning : why you should learn it -- Fundamental concepts : how do machines learn? -- Introduction to neural prediction : forward propagation -- Introduction to neural learning : gradient descent -- Learning multiple weights at a time : generalizing gradient descent -- Building your first deep neural network : introduction to backpropagation -- How to picture neural networks : in your head and on paper -- Learning signal and ignoring noise : introduction to regularization and batching -- Modeling probabilities and nonlinearities : activation functions -- Neural learning about edges and corners : intro to convolutional neural networks -- Neural networks that understand language : king - man + woman ==? -- Neural networks that write like Shakespeare : recurrent layers for variable-length data -- Introducing automatic optimization : let's build a deep learning framework -- Learning to write like Shakespeare : long short-term memory -- Deep learning on unseen data : introducing federated learning -- Where to go from here : a brief guide. 
520 |a "Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare!"-- 
526 |a CSE 
541 |a Karim International, Book Finder International  |e 34936, 34937, 41911, 41912 
650 0 |a Machine learning.  |9 33279 
650 0 |a Neural networks (Computer science)  |9 33280 
650 0 |a Computer science  |9 42516 
650 0 |a Python (Computer program language)  |9 33281 
852 |a Ayesha Abed Library  |c General Stacks 
942 |2 ddc  |c BK 
999 |c 40667  |d 40667 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_310000000000000_TRA  |7 0  |9 65793  |a BRACUL  |b BRACUL  |c GEN  |d 2019-07-22  |e Karim International  |g 5400.00  |l 13  |m 113  |o 006.31 TRA  |p 3010034937  |q 2025-03-02  |r 2024-12-19  |s 2024-12-19  |t 2  |v 5400.00  |w 2019-07-22  |y BK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_310000000000000_TRA  |7 0  |9 65794  |a BRACUL  |b BRACUL  |c GEN  |d 2019-07-22  |e Karim International  |g 5400.00  |l 12  |m 150  |o 006.31 TRA  |p 3010034936  |r 2025-02-27  |s 2025-02-09  |t 1  |v 5400.00  |w 2019-07-22  |y BK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_310000000000000_TRA  |7 0  |9 74636  |a BRACUL  |b BRACUL  |c GEN  |d 2023-10-17  |e Book Finder International  |g 7747.15  |l 4  |m 40  |o 006.31 TRA  |p 3010041912  |q 2025-03-03  |r 2024-10-01  |s 2024-10-01  |t 2  |v 7747.15  |w 2023-10-17  |y BK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_310000000000000_TRA  |7 0  |9 74637  |a BRACUL  |b BRACUL  |c GEN  |d 2023-10-17  |e Book Finder International  |g 7747.15  |l 6  |m 37  |o 006.31 TRA  |p 3010041911  |q 2025-03-06  |r 2024-12-15  |s 2024-12-15  |t 3  |v 7747.15  |w 2023-10-17  |y BK