Finite volume methods for solving hyperbolic partial differential equations on curved manifolds
The natural mathematical arena to formulate conservation laws on curve manifolds is that of differential geometry. Ricci developed this branch of mathematics from 1887 to 1896. Subsequent work in differential geometry has made it an indespensible tool for solving in mathematical physics. The idea f...
Tác giả chính: | |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
BRAC University
2010
|
Những chủ đề: | |
Truy cập trực tuyến: | http://hdl.handle.net/10361/533 |