Finite volume methods for solving hyperbolic partial differential equations on curved manifolds

The natural mathematical arena to formulate conservation laws on curve manifolds is that of differential geometry. Ricci developed this branch of mathematics from 1887 to 1896. Subsequent work in differential geometry has made it an indespensible tool for solving in mathematical physics. The idea f...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsman: Rahman, Moshiour
Materialtyp: Artikel
Språk:English
Publicerad: BRAC University 2010
Ämnen:
Länkar:http://hdl.handle.net/10361/533