Finite volume methods for solving hyperbolic partial differential equations on curved manifolds
The natural mathematical arena to formulate conservation laws on curve manifolds is that of differential geometry. Ricci developed this branch of mathematics from 1887 to 1896. Subsequent work in differential geometry has made it an indespensible tool for solving in mathematical physics. The idea f...
Автор: | Rahman, Moshiour |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
BRAC University
2010
|
Предмети: | |
Онлайн доступ: | http://hdl.handle.net/10361/533 |
Схожі ресурси
Introduction to partial differential equations /
за авторством: Rao, K. Sankara
Опубліковано: (1995)
за авторством: Rao, K. Sankara
Опубліковано: (1995)
Схожі ресурси
-
Finite volume methods for solving hyperbolic problems on euclidean manifolds without radially symmetric initial condition
за авторством: Rahaman, Moshiour, та інші
Опубліковано: (2010) -
Finite difference schemes and partial differential equations /
за авторством: Strikwerda, John C., 1947-
Опубліковано: (2004) -
An introduction to differentiable manifolds and Riemannian geometry /
за авторством: Boothby, William M. (William Munger), 1918-
Опубліковано: (2003) -
Finite element methods for integrodifferential equations /
за авторством: Chen, Chuanmiao
Опубліковано: (1998) -
The finite element method in engineering /
за авторством: Rao, S. S.
Опубліковано: (2005)