Finite volume methods for solving hyperbolic partial differential equations on curved manifolds
The natural mathematical arena to formulate conservation laws on curve manifolds is that of differential geometry. Ricci developed this branch of mathematics from 1887 to 1896. Subsequent work in differential geometry has made it an indespensible tool for solving in mathematical physics. The idea f...
Yazar: | Rahman, Moshiour |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
BRAC University
2010
|
Konular: | |
Online Erişim: | http://hdl.handle.net/10361/533 |
Benzer Materyaller
Introduction to partial differential equations /
Yazar:: Rao, K. Sankara
Baskı/Yayın Bilgisi: (1995)
Yazar:: Rao, K. Sankara
Baskı/Yayın Bilgisi: (1995)
Benzer Materyaller
-
Finite volume methods for solving hyperbolic problems on euclidean manifolds without radially symmetric initial condition
Yazar:: Rahaman, Moshiour, ve diğerleri
Baskı/Yayın Bilgisi: (2010) -
Finite difference schemes and partial differential equations /
Yazar:: Strikwerda, John C., 1947-
Baskı/Yayın Bilgisi: (2004) -
An introduction to differentiable manifolds and Riemannian geometry /
Yazar:: Boothby, William M. (William Munger), 1918-
Baskı/Yayın Bilgisi: (2003) -
Finite element methods for integrodifferential equations /
Yazar:: Chen, Chuanmiao
Baskı/Yayın Bilgisi: (1998) -
The finite element method in engineering /
Yazar:: Rao, S. S.
Baskı/Yayın Bilgisi: (2005)