Finite volume methods for solving hyperbolic partial differential equations on curved manifolds
The natural mathematical arena to formulate conservation laws on curve manifolds is that of differential geometry. Ricci developed this branch of mathematics from 1887 to 1896. Subsequent work in differential geometry has made it an indespensible tool for solving in mathematical physics. The idea f...
第一著者: | Rahman, Moshiour |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
BRAC University
2010
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/533 |
類似資料
-
Finite volume methods for solving hyperbolic problems on euclidean manifolds without radially symmetric initial condition
著者:: Rahaman, Moshiour, 等
出版事項: (2010) -
Finite difference schemes and partial differential equations /
著者:: Strikwerda, John C., 1947-
出版事項: (2004) -
An introduction to differentiable manifolds and Riemannian geometry /
著者:: Boothby, William M. (William Munger), 1918-
出版事項: (2003) -
Finite element methods for integrodifferential equations /
著者:: Chen, Chuanmiao
出版事項: (1998) -
The finite element method in engineering /
著者:: Rao, S. S.
出版事項: (2005)