Finite volume methods for solving hyperbolic partial differential equations on curved manifolds
The natural mathematical arena to formulate conservation laws on curve manifolds is that of differential geometry. Ricci developed this branch of mathematics from 1887 to 1896. Subsequent work in differential geometry has made it an indespensible tool for solving in mathematical physics. The idea f...
מחבר ראשי: | Rahman, Moshiour |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
BRAC University
2010
|
נושאים: | |
גישה מקוונת: | http://hdl.handle.net/10361/533 |
פריטים דומים
-
Finite volume methods for solving hyperbolic problems on euclidean manifolds without radially symmetric initial condition
מאת: Rahaman, Moshiour, et al.
יצא לאור: (2010) -
Finite difference schemes and partial differential equations /
מאת: Strikwerda, John C., 1947-
יצא לאור: (2004) -
An introduction to differentiable manifolds and Riemannian geometry /
מאת: Boothby, William M. (William Munger), 1918-
יצא לאור: (2003) -
Finite element methods for integrodifferential equations /
מאת: Chen, Chuanmiao
יצא לאור: (1998) -
The finite element method in engineering /
מאת: Rao, S. S.
יצא לאור: (2005)