Finite volume methods for solving hyperbolic partial differential equations on curved manifolds
The natural mathematical arena to formulate conservation laws on curve manifolds is that of differential geometry. Ricci developed this branch of mathematics from 1887 to 1896. Subsequent work in differential geometry has made it an indespensible tool for solving in mathematical physics. The idea f...
Κύριος συγγραφέας: | Rahman, Moshiour |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
BRAC University
2010
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10361/533 |
Παρόμοια τεκμήρια
-
Finite volume methods for solving hyperbolic problems on euclidean manifolds without radially symmetric initial condition
ανά: Rahaman, Moshiour, κ.ά.
Έκδοση: (2010) -
Finite difference schemes and partial differential equations /
ανά: Strikwerda, John C., 1947-
Έκδοση: (2004) -
An introduction to differentiable manifolds and Riemannian geometry /
ανά: Boothby, William M. (William Munger), 1918-
Έκδοση: (2003) -
Finite element methods for integrodifferential equations /
ανά: Chen, Chuanmiao
Έκδοση: (1998) -
The finite element method in engineering /
ανά: Rao, S. S.
Έκδοση: (2005)