Nonparametric bootstrapping for multiple logistic regression model using R

The use of explanatory variables or covariates in a regression model is an important way to represent heterogeneity in a population. Again bootstrapping is rapidly becoming a popular tool to apply in a broad range of standard applications including multiple regression. The nonparametric bootstrap al...

Полное описание

Библиографические подробности
Главные авторы: Hossain, Ahmed, Khan, H.T. Abdullah
Язык:English
Опубликовано: BRAC University 2010
Предметы:
Online-ссылка:http://hdl.handle.net/10361/520
id 10361-520
record_format dspace
spelling 10361-5202019-09-29T05:45:59Z Nonparametric bootstrapping for multiple logistic regression model using R Hossain, Ahmed Khan, H.T. Abdullah Nonparametric Bootstrapping Sampling Logistic regression Covariates The use of explanatory variables or covariates in a regression model is an important way to represent heterogeneity in a population. Again bootstrapping is rapidly becoming a popular tool to apply in a broad range of standard applications including multiple regression. The nonparametric bootstrap allows us to estimate the sampling distribution of a statistic empirically without making assumptions about the form of the population, and without deriving the sampling distribution explicitly. The main objective of this study to discuss the nonparametric bootstrapping procedure for multiple logistic regression model associated with Davidson and Hinkley's (1997) “boot” library in R. 2010-10-14T10:20:23Z 2010-10-14T10:20:23Z 2004 http://hdl.handle.net/10361/520 en BRAC University Journal, BRAC University; application/pdf BRAC University
institution Brac University
collection Institutional Repository
language English
topic Nonparametric
Bootstrapping
Sampling
Logistic regression
Covariates
spellingShingle Nonparametric
Bootstrapping
Sampling
Logistic regression
Covariates
Hossain, Ahmed
Khan, H.T. Abdullah
Nonparametric bootstrapping for multiple logistic regression model using R
description The use of explanatory variables or covariates in a regression model is an important way to represent heterogeneity in a population. Again bootstrapping is rapidly becoming a popular tool to apply in a broad range of standard applications including multiple regression. The nonparametric bootstrap allows us to estimate the sampling distribution of a statistic empirically without making assumptions about the form of the population, and without deriving the sampling distribution explicitly. The main objective of this study to discuss the nonparametric bootstrapping procedure for multiple logistic regression model associated with Davidson and Hinkley's (1997) “boot” library in R.
author Hossain, Ahmed
Khan, H.T. Abdullah
author_facet Hossain, Ahmed
Khan, H.T. Abdullah
author_sort Hossain, Ahmed
title Nonparametric bootstrapping for multiple logistic regression model using R
title_short Nonparametric bootstrapping for multiple logistic regression model using R
title_full Nonparametric bootstrapping for multiple logistic regression model using R
title_fullStr Nonparametric bootstrapping for multiple logistic regression model using R
title_full_unstemmed Nonparametric bootstrapping for multiple logistic regression model using R
title_sort nonparametric bootstrapping for multiple logistic regression model using r
publisher BRAC University
publishDate 2010
url http://hdl.handle.net/10361/520
work_keys_str_mv AT hossainahmed nonparametricbootstrappingformultiplelogisticregressionmodelusingr
AT khanhtabdullah nonparametricbootstrappingformultiplelogisticregressionmodelusingr
_version_ 1814306901328920576