Deep learning approaches to EEG and fMRI data: a comparative study for sleep stage classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2024.
Główni autorzy: | Tanvir, Farhan, Rahman, Tanjilur, Kamal, S M Arfa, Hassan, Mahmudul, Nazia, Nowshin |
---|---|
Kolejni autorzy: | Nahim, Nabuat Zaman |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2024
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/24267 |
Podobne zapisy
-
Brain image fMRI data classification and graphical representation of visual object
od: Tasneem, Nazifa Afroza, i wsp.
Wydane: (2019) -
Comparison of different CNN architectures for brain tumor detection using fMRI
od: Mashiat, Afsara, i wsp.
Wydane: (2021) -
Detection of early stages of Parkinson's disease by analyzing fMRI data and machine learning approaches
od: Neehal, Ahmed Hasin, i wsp.
Wydane: (2020) -
Visual object classification from fMRI data
od: Newaz, Syed Mishar, i wsp.
Wydane: (2022) -
Analysis of real-time hostile activitiy detection from spatiotemporal features using time distributed deep convolutional neural networks, recurrent neural networks and attention-based mechanisms
od: Siddique, Labib Ahmed, i wsp.
Wydane: (2022)