Deep learning approaches to EEG and fMRI data: a comparative study for sleep stage classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2024.
Autori principali: | Tanvir, Farhan, Rahman, Tanjilur, Kamal, S M Arfa, Hassan, Mahmudul, Nazia, Nowshin |
---|---|
Altri autori: | Nahim, Nabuat Zaman |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2024
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/24267 |
Documenti analoghi
-
Brain image fMRI data classification and graphical representation of visual object
di: Tasneem, Nazifa Afroza, et al.
Pubblicazione: (2019) -
Comparison of different CNN architectures for brain tumor detection using fMRI
di: Mashiat, Afsara, et al.
Pubblicazione: (2021) -
Detection of early stages of Parkinson's disease by analyzing fMRI data and machine learning approaches
di: Neehal, Ahmed Hasin, et al.
Pubblicazione: (2020) -
Visual object classification from fMRI data
di: Newaz, Syed Mishar, et al.
Pubblicazione: (2022) -
Analysis of real-time hostile activitiy detection from spatiotemporal features using time distributed deep convolutional neural networks, recurrent neural networks and attention-based mechanisms
di: Siddique, Labib Ahmed, et al.
Pubblicazione: (2022)