ResInvolution: an involution-ResNet fused global spatial relation leveraging model for histopathological image analysis under federated learning environment
This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering, 2024.
Päätekijä: | Dipto, Shakib Mahmud |
---|---|
Muut tekijät: | Alam, Md. Ashraful |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
Brac University
2024
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10361/24040 |
Samankaltaisia teoksia
-
Enhanced medical image analysis: leveraging CUDA for fast and accurate Pneumonia detection with optimized CNNs
Tekijä: Alvi, Md.Waseq Alauddin
Julkaistu: (2024) -
Early stage detection and classification of colon cancer using deep learning and explainable AI on histopathological images
Tekijä: Hossain, Mainul, et al.
Julkaistu: (2022) -
A comparative analysis of the different CNN-LSTM model caption generation of medical images
Tekijä: Amin, Mahzabin Yasmin Binte, et al.
Julkaistu: (2023) -
Detecting anomalies in human eyes using structural similarity index measurement
Tekijä: Jahan, Monwar, et al.
Julkaistu: (2019) -
Leveraging unsupervised segmentation for semi-supervised renal calculi and carcinoma segmentation and classification
Tekijä: Faruk, Farhan, et al.
Julkaistu: (2024)