ResInvolution: an involution-ResNet fused global spatial relation leveraging model for histopathological image analysis under federated learning environment
This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering, 2024.
Egile nagusia: | Dipto, Shakib Mahmud |
---|---|
Beste egile batzuk: | Alam, Md. Ashraful |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2024
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/24040 |
Antzeko izenburuak
-
Enhanced medical image analysis: leveraging CUDA for fast and accurate Pneumonia detection with optimized CNNs
nork: Alvi, Md.Waseq Alauddin
Argitaratua: (2024) -
Early stage detection and classification of colon cancer using deep learning and explainable AI on histopathological images
nork: Hossain, Mainul, et al.
Argitaratua: (2022) -
A comparative analysis of the different CNN-LSTM model caption generation of medical images
nork: Amin, Mahzabin Yasmin Binte, et al.
Argitaratua: (2023) -
Detecting anomalies in human eyes using structural similarity index measurement
nork: Jahan, Monwar, et al.
Argitaratua: (2019) -
Leveraging unsupervised segmentation for semi-supervised renal calculi and carcinoma segmentation and classification
nork: Faruk, Farhan, et al.
Argitaratua: (2024)