A machine learning approach to predicting and mitigating traffic congestion
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2024.
Huvudupphovsmän: | Faisal, Abu Fatah Mohammed, Zahid, Chowdhury Zaber Bin, Hasan, Walid Ibne, Talukder, Shuvo |
---|---|
Övriga upphovsmän: | Esfar-E-Alam, A.M. |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
Brac University
2024
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/23938 |
Liknande verk
-
A novel approach to forecast traffic congestion using CMTF and machine learning
av: Chowdhury, Md. Mohiuddin, et al.
Publicerad: (2018) -
Application of machine learning techniques on the context of predicting upcoming traffic congestion and providing the best preferred path
av: Saquib, Muhammad Sadman, et al.
Publicerad: (2019) -
Traffic congestions in Dhaka and socio-economic development in Bangladesh: some micro and macro-level connections
av: Ahmed, Ansar
Publicerad: (2017) -
Reducing traffic congestion through ride sharing in Bangladesh: a case study of Dhaka City
av: Mollah, Md Lokman Hossain
Publicerad: (2021) -
BIGD Quarterly, October –December, 2016
av: BRAC Institute of Governance and Development, BRAC University
Publicerad: (2019)