A machine learning approach to predicting and mitigating traffic congestion
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2024.
Hoofdauteurs: | Faisal, Abu Fatah Mohammed, Zahid, Chowdhury Zaber Bin, Hasan, Walid Ibne, Talukder, Shuvo |
---|---|
Andere auteurs: | Esfar-E-Alam, A.M. |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2024
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/23938 |
Gelijkaardige items
-
A novel approach to forecast traffic congestion using CMTF and machine learning
door: Chowdhury, Md. Mohiuddin, et al.
Gepubliceerd in: (2018) -
Application of machine learning techniques on the context of predicting upcoming traffic congestion and providing the best preferred path
door: Saquib, Muhammad Sadman, et al.
Gepubliceerd in: (2019) -
Traffic congestions in Dhaka and socio-economic development in Bangladesh: some micro and macro-level connections
door: Ahmed, Ansar
Gepubliceerd in: (2017) -
Reducing traffic congestion through ride sharing in Bangladesh: a case study of Dhaka City
door: Mollah, Md Lokman Hossain
Gepubliceerd in: (2021) -
BIGD Quarterly, October –December, 2016
door: BRAC Institute of Governance and Development, BRAC University
Gepubliceerd in: (2019)