A machine learning approach to predicting and mitigating traffic congestion
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2024.
Main Authors: | Faisal, Abu Fatah Mohammed, Zahid, Chowdhury Zaber Bin, Hasan, Walid Ibne, Talukder, Shuvo |
---|---|
Andre forfattere: | Esfar-E-Alam, A.M. |
Format: | Thesis |
Sprog: | English |
Udgivet: |
Brac University
2024
|
Fag: | |
Online adgang: | http://hdl.handle.net/10361/23938 |
Lignende værker
-
A novel approach to forecast traffic congestion using CMTF and machine learning
af: Chowdhury, Md. Mohiuddin, et al.
Udgivet: (2018) -
Application of machine learning techniques on the context of predicting upcoming traffic congestion and providing the best preferred path
af: Saquib, Muhammad Sadman, et al.
Udgivet: (2019) -
Traffic congestions in Dhaka and socio-economic development in Bangladesh: some micro and macro-level connections
af: Ahmed, Ansar
Udgivet: (2017) -
Reducing traffic congestion through ride sharing in Bangladesh: a case study of Dhaka City
af: Mollah, Md Lokman Hossain
Udgivet: (2021) -
BIGD Quarterly, October –December, 2016
af: BRAC Institute of Governance and Development, BRAC University
Udgivet: (2019)