D-ARTNET22 V1: a neural network framework against stolen digital artworks getting Non-Fungible Token (NFT) labels
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Huvudupphovsmän: | Dipro, Farhan Hasin, Simran, Sheikh Saif, Akhter, Mansura, Momo, Ramisa Fariha, Musharrat, Ramisa |
---|---|
Övriga upphovsmän: | Hossain, Muhammad Iqbal |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
Brac University
2024
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/23617 |
Liknande verk
-
A novel approach for digital image watermarking
av: Mitashe, Mashruha Raquib, et al.
Publicerad: (2016) -
SWT and SIFT based copy-move image forgery detection
av: Das, Taposh, et al.
Publicerad: (2018) -
Traumatic meningeal enhancement detection by deep learning-based biomedical image analysis and handcrafted features extraction
av: Uddin, Mohammad Sakib, et al.
Publicerad: (2024) -
A comparative analysis of the different CNN-LSTM model caption generation of medical images
av: Amin, Mahzabin Yasmin Binte, et al.
Publicerad: (2023) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
av: Kamran, Sharif Amit, et al.
Publicerad: (2017)